Walking–sliding experimental analysis of frictional characteristics socked feet

Author:

Sun Guangwu123ORCID,Xie Hong123,Lake Mark J4,Li Jiecong5ORCID,Chen Xiaona123ORCID,Li Yanmei123

Affiliation:

1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, P.R. China

2. Textile Industrial Key Lab of Ergonomics and Functional Clothing, Shanghai University of Engineering Science, Shanghai, P.R. China

3. Sino-British Joint Lab for Smart Sportswear, Shanghai University of Engineering Science, P.R. China

4. Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK

5. College of Textiles, Donghua University, Shanghai, P.R. China

Abstract

Simulation experiments and in-vivo experiments were widely employed for investigating sock-skin frictional characteristics. The simulation experiments usually was a type of sliding experiment which described the relative slip between fabric and artificial skin. The in-vivo approaches typically involved subjects adopting a variety of postures and friction between their clothing and the skin was estimated. However, simulation and in-vivo experiments were reported only separately. The connection between the two types of experiments was scarcely reported. To reveal the connection, we synchronously carried out two interrelated experiments, a natural walking experiment and sliding experiment, using the same sock fabric. In the natural walking experiment, the subject wearing socks walked on the force platform. Then the soles of these socks were cut out and were used in the soles-artificial skin sliding experiment. The coefficients of friction in the two types of experiments reflected some correlative frictional characteristics. We found the effect of the walking speed or sliding speed on the friction coefficient was not significant. While, water content increased the friction coefficient in the two experiment. Additionally, the friction in the coronal direction was smaller than that in the sagittal direction during walking. Through our efforts, we hope to bridge the simulation and in-vivo experiments and elucidate the frictional characteristics between the sock and insole.

Funder

Talent Program of Shanghai University of Engineering Science

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3