Textile-based weft knit strain sensor: Experimental investigation of the effect of stretching on electrical conductivity and electromagnetic shielding

Author:

Palanisamy Sundaramoorthy1ORCID,Tunakova Veronika1ORCID,Tunak Maros2ORCID,Militky Jiri1

Affiliation:

1. Department of Material engineering, Technical University of Liberec Faculty of Textile Engineering, Czech Republic

2. Department of Textile Evaluation, Technical University of Liberec Faculty of Textile Engineering, Czech Republic

Abstract

Recently, the research and development of textile-based sensors have attracted considerable attention. Changes in electrical conductivity (EC) and electromagnetic (EM) shielding effectiveness (SE) during external stimuli are the most frequently studied output. In this study, the EC and EM SE of an electro-conductive 1 × 1 rib knitted fabric made of metal-coated yarn were investigated during uniaxial and biaxial stretching. According to a theoretical survey, 2 main mechanisms are expected to influence the EC of the fabric under mechanical stress: the contact resistance at the junction of two yarns at low levels of applied force and the electrical resistance (ER) of yarn at high stress. Therefore, the electromechanical properties of single, single-loop, and multiloop yarns were also explored to explain the knitted fabric behavior during uniaxial and biaxial stretching. The SE of the knitted fabric varied from 63 to 47 dB based on the type and level of stretching. Using tests with yarns and crocheted chains, we confirmed that the effect of contact points and resistance on the entire ER textile unit prevails at low deformations. Further, the SE increased almost linearly with deformation during wale-wise stretching. The SE results correlate well with the ER values, which reflect the contact and longitudinal resistances of the knitted fabric. The higher the ER, the lower the SE. Notably, the porosity, which changes during stretching, needs to be considered in estimating SE. It was experimentally confirmed that the knit electro-conducite fabric could be used as a wireless strain sensors.

Funder

Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3