Development of a shear forming envelope for carbon fibre non-crimp fabrics

Author:

Lux Benedikt1ORCID,Fial Julian2,Schmidt Olivia2,Carosella Stefan2ORCID,Middendorf Peter2,Fox Bronwyn1

Affiliation:

1. Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Australia

2. Institute of Aircraft Design, University of Stuttgart, Stuttgart, Germany

Abstract

Our research aims to develop a shear forming envelope for the preforming of textiles, a critical step in the manufacture of fibre-reinforced composite materials. This paper demonstrates the progress towards this aim by conducting picture frame tests to empirically determine the locking angle of non-crimp fabrics with different fibre orientations. While conventional shear tests typically utilise woven textile samples with orthogonal fibre directions of 0°/90°, the investigation of non-crimp fabrics, especially with non-standard fibre orientations, is less common. As a result, there is little knowledge about the shear deformation behaviour of these fabric types, despite their relevance to the aerospace industry. In this study, the shear locking angles of various carbon fibre non-crimp fabrics are investigated, gradually reducing the relative fibre angles of the textile materials from ±45° to ±22.5°. Previously, it was observed that unidirectional 0° reinforcement layers induce draping defects when forming multiaxial non-crimp fabric stacks into curved aerospace stiffeners. Their substitution by reinforcements with smaller cross-ply angles such as ±30° resulted in better formability and reduced defects. It is however unclear, how the shear locking angle decreases with more acute cross-ply angles. Here, we report for the first time a correlation between the fibre orientation of the non-crimp fabric and its shear locking angle. The resulting shear forming envelope provides composite design and manufacturing guidance for an enhanced utilisation of the advantageous but anisotropic properties of carbon fibre textiles.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3