Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluid-treated Twaron® composite

Author:

Baharvandi Hamid Reza1,Alebooyeh Morteza2,Alizadeh Masoud3,Khaksari Peiman4,Kordani Naser5

Affiliation:

1. School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran

2. Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

3. Department of Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

4. Ceramic Division, Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran

5. Department of Mechanical Engineering, University of Mazandaran, Mazandaran, Iran

Abstract

Intelligent energy shunting fluid/fabric base structure which utilizes well-processed shear thickening fluid has been developed. The shear thickening fluid has been synthesized by a powerful mechanical stirrer to disperse 12 nm silica particles into polyethylene glycol 200 g/mol at three concentration levels from low to near maximum packing as 15, 25 and 35 wt%. Examining the rheological behavior of the shear thickening fluid indicates that the increase of shear thickening fluid concentration leads to significant increase in the suspension’s initial, critical and ultimate (up to 104 Pa.s) viscosities, reduction of the critical shear rate, increase of viscoelastic modulus and instability of the suspension. The quasi-static puncture test results demonstrate with the increase of shear thickening fluid concentration, the maximum bearable load by the 15, 25 and 35 wt% shear thickening fluids-treated Twaron® composites increases by 132, 315 and 362%, and the energy absorption increases by 143, 159 and 209%, respectively, compared to the neat fabric. Regarding penetrator structure and dimension, by using rounded penetrators, windowing and pull-out mechanisms would be expected at low velocities. However, sharp-nosed penetrators most likely cause yarns to push aside that is not taken into account as a perfect criteria for investigation of puncture resistance performance. Also, larger penetrators have a larger presented area of impact and, as a result, break more number of yarns to penetrate the fabric.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3