Affiliation:
1. College of Mechanical Engineering, Donghua University, Shanghai, China
Abstract
Braiding carriers, which are the important parts of a braiding machine, have the functions such as carrying braiding materials, controlling tension of carbon fiber, and driving carbon fiber movement. During the braiding process, two groups of carbon fibers braided in clockwise and counter clockwise direction contact each other and form relative motion, which causes friction and fuzzing. In order to improve this situation, the structural parameters of the carriers need to be optimized. In this paper, the kinematics and dynamics models were established based on the structure of braiding carriers. The micro-element method was used to analyze the relationship between the fiber length released from the yarn barrel, the rotation angle of the lever, and the tension of the carbon fiber. To limit the fluctuant range of carbon fiber tension, and to alleviate the fluffing phenomenon caused by the two groups of carbon fiber in contact with each other, antlion algorithm was used to optimize the structural parameters of braiding carriers. The simulation results showed that the tension of the carbon fiber can meet the processing requirements by adjusting the starting angle of each stage of carrier, the length of lever, the elastic coefficient of springs, and pre-compression of springs. It can be known that the structural parameters of braiding carriers optimized by antlion algorithm could meet the requirement of carbon fiber tension.
Funder
the rolling support plan for the excellent innovation team by Ministry of Education of the People's Republic of China
Donghua University Graduate Student Degree Thesis Innovation Fund Project
the National Natural Science Foundation of China
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献