A review of graphene-based broad bandwidth microwave absorbing textile-based composites in the low-frequency range

Author:

Aiqiong Wang1ORCID,Li Jianxiong2,Chen Meng1,Zhao Xiaoming1

Affiliation:

1. School of Textile Science and Engineering, Tiangong University, Tianjin, China

2. School of Electronics & Information Engineering, Tiangong University, Tianjin, China

Abstract

The range and strength of Electromagnetic Wave loss are increasing with the development of electronic technology in intellectualization and diversification. Extensive research is focused on high-frequency microwave absorbersbut rarely on low-frequency ones. However, the shield of low-frequency microwave interference is bulky and complicated. It is necessary to adopt new structural composites with lightweight, porous, or multi-layer magneto-dielectric synergistic to obtain lighter, thinner, broader bandwidth, and strong absorption absorbers in the low-frequency range. The porous and multi-layer textiles would extend the Microwave (M. W.) transmitting pathway. The prepared M. W. textile-based composites possess broad bandwidth and strong absorption in the low-frequency range when magneto-dielectric synergistic functional particles have embedded in the textiles. This paper reviewed the modified graphene-based absorbers (GBAs), the hybrids combined GBAs with the low-frequency magnetic loss absorbers (LFMLAs), and the textile-based composites added by the complex combined GBAs with LFMLAs (GBAs/LFMLAs). The prepared GBAs/LFMLAs textile-based composites are broad bandwidth, lightweight, small thickness, and strong absorption materials in the low-frequency range. The prepared GBAs/LFMLAs textile-based microwave absorbers (MWAs) may expand the application scope of MWAs and promote their economic benefit. The GBAs/LFMLAs textile-based composites may propose a new strategy of broad bandwidth MWAs in the low-frequency range.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3