Fabrication and evaluation of aramid fiber/polytetrafluoroethylene emulsion/tourmaline particle composite filter media: Filtration performance, thermal behavior, and mechanical property

Author:

Lv Chao1ORCID,Cheng Jiao1,Shen Ruiqing2,Zhang Shu1,Shu Rui1,Li Guodong1,Liu Jingxian1

Affiliation:

1. Filter Test Center, School of Resources and Civil Engineering, Northeastern University, Shenyang, China

2. Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA

Abstract

An electrostatically enhanced aramid fiber/polytetrafluoroethylene emulsion/tourmaline particle (AF/PTFE/TM) composite filter media was successfully designed and fabricated by impregnation technology, especially for harsh industrial environment with high temperature. The AF/PTFE/TM composite filter media exhibited the optimum quality factor when the concentration of PTFE emulsion was 10% and the content of TM particles was 12.5 g/cm2. The collection efficiency, pressure drop characteristic, thermal decomposition behavior and kinetics, and tensile strength in machine and cross directions of the composite filter media have been systematically evaluated. Benefiting from the pyroelectricity and piezoelectricity of TM particles, the composite filter media has better collection efficiency with the increase of incoming air temperature. With the increase of flow velocity, the decrease of collection efficiency is smaller than the filter media without TM particles. Meanwhile, the pressure drop across the composite filter media is a little higher than that across the raw filter media. Additionally, it was found PTFE emulsion coating can improve the thermal stability and tensile strength of the composite filter media. TM particles have no negative impact on the thermal behavior of the composite filter media, but slightly attenuates the enhancement in tensile strength. This study provides new insight into the application of TM particles as well as other pyroelectric and piezoelectric materials in industrial filtration.

Funder

National Science and Technology Major Project of China

National Science and Technology Major Project of Liaoning Province

National Science and Technology Major Project of Zhejiang Province

National Science and Technology Major Project of Shenyang city

Green Manufacturing Project of Industry and Information Department of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3