A study on design and properties of woven-nonwoven multi-layered hybrid geotextiles

Author:

Li Ting-Ting12,Zhou Xiangyu1,Wang Zhike1,Fan Yuyang1,Zhang Xiayun1,Lou Ching-Wen1345,Lin Jia-Horng12678

Affiliation:

1. Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin, China

2. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China

3. Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan

4. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

5. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, China

6. Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan

7. Ocean College, Minjiang University, Fuzhou, China

8. School of Chinese Medicine, China Medical University, Taichung, Taiwan

Abstract

The area of forests continues decreasing while the water/soil loss becomes worse. In these complicated environments, mechanical properties, stability, high modulus and low elongation of geotextiles are required. On a premise of the acquisition of good mechanical properties and the improvement in the deformation and puncture resistance of nonwoven fabric, woven/nonwoven hybrid geotextiles are designed and made with needle punch processing technology in this study. The test results indicate that the mechanical properties of hybrid geotextiles are improved significantly when the areal density of nylon fabrics is increased. In particular, with the areal density of 400 g/m2, hybrid geotextiles exhibit the maximal mechanical properties and puncture resistance. Moreover, the pore fraction of hybrid geotextiles decreases as a result of a rise in the areal density of nylon top/bottom layers. The use of a 3 D mesh fabric as the interlayer provides the needle punched composite geotextiles with the highest tensile resistance, puncture resistance. The composite geotextiles are treated with acid and alkali to simulate the corrosion under natural conditions of stabilized soil. The resultant geotextile has good mechanical properties and acid/alkali degradation resistance. This allows the hybrid geotextiles to stabilize water and soil conservation in complicated conditions.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3