Evaluation of high-modulus, puncture-resistance composite nonwoven fabrics by response surface methodology

Author:

Li Ting-Ting1,Wang Rui1,Lou Ching Wen2,Lin Jia-Horng34

Affiliation:

1. School of Textiles, Tianjin Polytechnic University, Tianjin, China

2. Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taichung, Taiwan

3. Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan

4. School of Chinese Medicine, China Medical University, Taichung, Taiwan

Abstract

Recycled high-modulus Kevlar fibers were blended with Nylon 6 staple fibers and biocomponent low- Tm/high- Tm polyester fibers to form high-modulus puncture-resistance nonwoven fabrics via opening, mixing, carding, lapping, needle-punching, as well as hot-pressing processes. In this paper, biocomponent low- Tm/high- Tm polyester fiber content, needle-punching density, and hot-pressing temperature were changed to evaluate the tensile strength, bursting strength and static puncture resistance of resulting nonwoven fabrics as related to aforementioned three parameters based on response surface methodology. The result shows that the tensile strength is highly related to needle-punching density and hot-pressing temperature; but the bursting strength and static puncture resistance are significantly involved with the aforementioned three parameters. The tensile strength, bursting strength, and static puncture resistance all present increasing and then decreasing trend with increase of its respective concerning parameters. Moreover, the static puncture resistance strength has linear dependence on bursting strength.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3