Affiliation:
1. Hebei Technology Innovation Center of Textile and Garment, School of Textile and Garment, Hebei University of Science and Technology, Shijiazhuang, P. R. China
2. Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, P. R. China
Abstract
This study reveals the mechanical and interfacial bonding properties of glow discharge oxygen plasma modified ultrahigh molecular weight polyethylene (UHMWPE)/vinyl ester composites modified by oxygen plasma. The composites’ flexural, tensile, and impact-resistant properties were estimated, and the failure mechanism was analyzed by acoustic emission (AE) testing. The flexural stress, tensile stress, and impact-resistance force of the modified three plain weave structures composites are 193.37–734%, 11–15%, and 16–17% higher than those without modification. It depends on flexibility, interfacial bonding strength, reinforcement structure, and stiffness. In addition to the flexural properties, the tensile and impact properties increase with fiber volume fraction. In the AE test, the flexural and tensile cumulative energies without modification are 9230.42 mV*mS and 1.735 V*S higher than modified materials. The characteristic frequency range of each failure mechanism is determined by cluster analysis. Low, medium, and high frequency correspond to matrix cracking, fiber/matrix debonding, and fiber breakage. Oxygen plasma contributes to the wettability of the reinforcement and the interfacial bonding strength, resisting cracking growth.
Funder
Funding of Hebei Education Department
Natural Science Foundation of Hebei Province
Youth Talents Plan of Hebei Province
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献