Wearable properties of polylactic acid and thermoplastic polyurethane filaments 3D printed on polyester fabric

Author:

Liu Jing1,Jiang Shouxiang12

Affiliation:

1. School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China

2. Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Three-dimensional (3D) printing on textile substrates is a promising method to create objects with a variety of different materials that have tailored mechanical properties. This synthesis of technology is favored by current researchers to retain the characteristics of 3D printing while maintaining the wear comfort of fabrics. Although the importance and potential of textile-based 3D printing have been recognized, it is worth noting that there is still a lack of comprehensive studies on the basic wearable properties. In this study, polylactic acid (PLA) and thermoplastic polyurethane (TPU) are extruded separately onto polyester fabric. Then the wearable properties are examined through bending, compression, thermal conductivity, and thermography tests, which are carried out by using the KES-FB system and a thermal imager. The results indicate that the printed PLA on polyester fabric has a better washing resistance than the printed TPU on polyester fabric with a smaller reduction in the peel force after different washing cycles. The rate of decline of the printed TPU samples is 53.2%, which is more than twice that of the printed PLA samples (20.4%) after 30 washing cycles. In terms of the physical and thermal properties, the results show that the bending rigidity, bending hysteresis, compression energy, k values, and thermal insulation properties of the PLA and TPU samples are generally well-correlated with the number of printed layers. Further applications can be explored based on the results reported in this paper.

Funder

Research Grants Council in the form of a postgraduate award from The Hong Kong Polytechnic University

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3