Dynamic mechanical and thermogravimetric analysis of PTFE blended tailor-made textile woven basalt–vinyl ester composites

Author:

Subramanian Karthikeyan1,Nagarajan Rajini1,Saravanasankar Subramaniam2,Sukumaran Jacob3,De Baets Patrick3

Affiliation:

1. Department of Mechanical Engineering, Centre for Composite Materials, Kalasalingam University, Krishnankoil, India

2. Department of Instrumentation and Control Engineering, PSG College of Technology, Coimbatore, India

3. Department of Mechanical Construction and Production, Ghent University, Ghent, Belgium

Abstract

In this work, the authors prepared basalt–vinyl ester tailor-made green composites with uncoated and polytetrafluroethylene coated basalt woven fabric. These composites were subjected to dynamic composites-made mechanical analysis and thermo gravimetric analysis. Results revealed that a significant improvement of 18%, 14% and 13% was observed for storage and loss modulus and damping properties of polytetrafluroethylene-coated composite at low temperature region. The thermo gravimetric analysis results indicated a three-stage degradation for the polytetrafluroethylene-filled composites. Based on the acceptability from the literature, the tribo-test was performed only on the polytetrafluroethylene-coated composite for the selected PV limit of 400 MPa-mm/s (10 KN and 50 mm/s) in a flat-on-flat configuration. It was found that the influence of polytetrafluroethylene filler on the static and dynamic coefficient of friction and specific wear rate of the composite was more pronounced at dry wear test condition and it was found as 0.22, 0.12, and 4.87484 E-09, respectively. However, the results of improved storage and loss modulus and damping manifested negative correlation with the friction characteristics in the glassy region. Further, the SEM-coupled EDX spectral analysis was performed to understand the formation of transfer layer in counter surface. This polytetrafluroethylene blended composite is to be considered as an alternative to the bearing materials in offshore application.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3