Design and characterization of a cotton fabric antenna for on-body thermotherapy

Author:

Mukai Yusuke1,Suh Minyoung2ORCID

Affiliation:

1. Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, USA

2. Department of Textile and Apparel, Technology and Management, North Carolina State University, Raleigh, NC, USA

Abstract

As a non-invasive therapeutic modality, microwave hyperthermia has gained increasing prominence in recent breast cancer research. In microwave hyperthermia, the temperature of a cancerous lesion is raised to 39–45°C by microwave irradiation to shrink tumors. Currently available applicators in clinics are aperture antennas (or waveguides) that are bulky and stationary; as such, patients are required to stay in an uncomfortable position for an extended period of time. On this account, this paper introduces the design and characterization of a novel cotton fabric antenna for a truly wearable and patient-friendly breast hyperthermia therapy. The developed antenna, consisting of cotton and copper-plated polyester fabrics, offers flexibility, tenacity, moisture-absorbing properties and breathability desirable for potential integration into intimate apparel. On the other hand, the use of cotton fabric brings about a major concern: moisture is documented to alter the dielectric properties of cotton fabrics and hence could impact the antenna performance. Therefore, for the purpose of concept and design validation, this research investigated the impedance matching and heating performance at three levels (20%, 65% and 80%) of relative humidity (RH). From both simulations and measurements, the RH was found to shift the resonant frequency slightly, but did not critically affect the impedance matching and the heating performance – the measured temperature rises were 4.7–4.9°C and 2.3–2.5°C at the depths of 5 mm and 15 mm, respectively. These theoretical and experimental insights cast light on the feasibility and benefits of moisture-absorbing, cotton-based medical textiles for administration of highly patient-friendly breast hyperthermia.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Analysis of UWB MIMO Antenna for Smart Fabric Communications;International Journal of Antennas and Propagation;2022-12-21

2. Textile Materials for Wireless Energy Harvesting;Electronic Materials;2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3