Optimization of electromagnetic shielding of three-dimensional orthogonal woven hybrid fabrics in ku band frequency region by response surface methodology

Author:

Singh Mukesh Kumar1ORCID,Saraswat Gaurav1,Mukhopadhyay Samrat2,Baskey Himangshu B3

Affiliation:

1. Uttar Pradesh Textile Technology Institute, Souterganj Kanpur, India

2. Department of Textile and Fibre Engineering, IIT Delhi, New Delhi, India

3. DMSRDE, GT Road Kanpur, India

Abstract

Electromagnetic shielding (EMS) has become the necessity of the present era due to enormous expansion in electronic devices accountable to emit electromagnetic radiation. The principal target of this paper is to originate three-dimensional (3D) orthogonal fabrics with conductive hybrid weft yarn and to determine their electromagnetic shielding. DREF-III core-spun yarn using copper filament in the core and polyphenylene sulfide (PPS) fiber on the sheath and fabric constructed of such yarn has a promising electromagnetic shielding characteristic. Box–Behnken experimental design has been employed to prepare various samples to investigate the electromagnetic shielding efficiency of 3D orthogonal woven structures. The orthogonal fabric samples were tested in an electromagnetic Ku frequency band using free space measurement system (FSMS) to estimate absorbance, reflectance, transmittance, and electromagnetic shielding. The increase in copper core filament diameter and hybrid yarn linear density enhances the EMS of orthogonal fabric. Statistical analysis has been done to bring out the effect and interaction of various yarn and fabric variables on EMS. Metal filament diameter, orientation, sheath fibers percentage, and fabric constructional parameters significantly affected electromagnetic shielding efficiency. The inferences of this study can be applied in other 3D structures like angle interlock, spacer fabrics for curtains, and coverings for civilians and military applications.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3