Measuring and modeling the effect of density and pile height on sound absorption of double base Persian rug

Author:

Ardekani Touba1,Alamdar Yazdi Aliasghar1ORCID,Vadood Morteza1,Garai Massimo2

Affiliation:

1. Department of Textile Engineering, Yazd University, Yazd, Iran

2. Department of Industrial Engineering (DIN), University of Bologna, Bologna, Italy

Abstract

The purpose of this study is to investigate the role of density and pile height on sound absorption coefficient in Double Base Persian (DBP) rug and possibility of prediction the acoustic behavior of DBP rug using the mathematical model. For this aim, in the first step, three double base rug samples were produced at different base densities (2, 4, and 6 warp yarn/cm) and the sound absorption coefficient of samples was measured with Impedance tube in two thicknesses (15 & 13 mm) to study the pile height effect. Moreover, the sound absorption of the double base zone was also measured by shaving off the pile from the double base rug samples. Three rug samples at different base densities were produced with very thin warp and weft yarns to avoid the base effect in this sample. Besides, the macroscopic empirical model (Johnson–Champoux–Allard (JCA)) was implemented on obtained data. The results showed that the sound absorption of the double base rug samples increases with increasing the pile height and base density. The role of the base zone in the sound absorption of the rug is bolder than the pile zone. What leads to improve the rug sound absorption by increasing density is increasing the sound absorption of base zone and the pile density changes do not play a major role in increasing the rug sound absorption. In addition, by assuming DBP rugs as a two-layer porous (pile + base zone) absorber, JCA model shows a good consistency with experimental data.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3