Affiliation:
1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, China
2. Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an, China
Abstract
This study reports the hardness and flexural performance of the three-dimensional (3 D) orthogonal carbon/glass hybrid fiber/bismaleimide composites subjected to the accelerated aging conditions for 10, 30, 90, 120, and 180 days at 250 °C in an air environment. The rate of reduction in the flexural performance and failure modes were observed, in general, to be related to the aging time. The experimental findings revealed that the significant decline in the flexural performance of the samples aged for less than 30 days was predominantly attributed to the matrix degradation, while for the longer aging durations, the cracks in the composites and decomposition of the residual matrix were responsible for the gradual reduction in the flexural performance. The unaged and 30 days aged samples suffered a brittle failure represented by the macro-cracks and fiber breakage, while the cracked fiber/matrix interface and loosened fiber bundles were the main failure modes for the samples aged for longer times. The changes in the flexural failure modes resulted due to the severe degradation of the matrix under an extreme thermo-oxidative environment. Subsequently, a nonlinear relationship relating the flexural modulus to hardness was proposed.
Funder
National Key Research and Development Program of China
Scientific and Technology Project for Overseas Students of Shaanxi of China
Thousand Talents Program of Shaanxi Province
Innovation Capacity Support Plan of Shaanxi of China
National Natural Science Foundation of China
Scientific Research Program Funded by Shaanxi Provincial Education Department
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献