Affiliation:
1. Faculty of Engineering, Department of Textile Engineering, University of Guilan, Rasht, Iran
2. Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract
Particulate matter and spread of viruses, including COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are two of the most serious problems because of their significant threat to human health. Here, we fabricate ultrafine and bimodal structured polyamide-6 nanofiber/nets (PA-6 NFN) membrane via one-step electrospinning/netting. The PA-6 NFN membranes include ultrafine (∼70 nm) nanofibers and two-dimensional (2D) ultrathin (∼20 nm) nanonets. These membranes are optimized by facilely regulating the solution concentration, incomplete phase separation by adding NaCl, and also applying a high voltage of 22 kV. With integrated properties of small pore size, high porosity, high specific surface area of 108.8 m2/g, and robust tensile strength of 13.70 MPa, the resultant PA-6 NFN membranes exhibit high filtration efficiency of 99.11%, low pressure drop of 81 Pa, and higher quality factor compared to the two standard commercial masks which consist of three-ply surgical mask and respirator face mask. It can include bacteria, fungi, and also viruses including SARS-CoV-2 (with a diameter of about 100 nm). Additionally, after 24 h of operation of the filtration process in a simulated living environment, the obtained air filter still displayed a high filtration efficiency and a less variation pressure drop that shows the long-term performance of PA-6 NFN membranes. In addition, the R2 value was 0.99, which indicates that the calculation results are in good agreement with the measured results. The fabrication of PA-6 NFN membrane makes it a promising candidate for PM0.3 governance at applications including face mask, protective clothing, clean room, and engine intake.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献