Prediction of textile geometry using an energy minimization approach

Author:

Sherburn Martin1,Long Andrew1,Jones Arthur1,Crookston Jonathan1,Brown Louise1

Affiliation:

1. Division of Materials, Mechanics and Structures, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

In this article, a numerical method to predict textile geometry is derived using a technique based on finite elements (FEs). A geometric modeling package is used to represent an initial geometry of the yarns within the textile. The yarn mid-surface is then represented using plate elements, with the yarn thickness and cross-section being reconstructed from this mid-surface. The bending and tensile aspects of the yarn behavior are represented by separate features of the plate elements and the total energy for the system is minimized. Contacts are modeled using a penalty method, where the contact force is proportional to penetration distance. Once geometry correction has been achieved by solving the FE problem, the geometric model of the textile is corrected to take into account the predicted movements of the yarns. For validation purposes, the method is applied to two-dimensional (2D) and three-dimensional (3D) weaves and compared against images of the real fabrics. Agreement between predictions and images is good for the 3D weave and excellent for the 2D weave.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3