Study on the friction characteristics of the bonding point of variable cross-section three-dimensional braided yarn increase based on the bonding method

Author:

Cheng Pan1ORCID,He Xinhai12,Zhou Hao1,Liu Fei12,Liang Junhao12,Wei Yubo1,Li Yanzhang1

Affiliation:

1. School of Materials Engineering, Xi’an Poltytechnic University, Xi’an, China

2. Xi’an Key Laboratory of Textile Composites, Xi’an, China

Abstract

In the process of using adhesive method for variable cross-section 3D weaving, the introduction of adhesive at the yarn increasing point greatly increases the friction and wear between carbon fibers, which can lead to a decrease in the overall performance of the prefabricated component. In response to the above issues, a self-made experimental fixture was developed to test the friction and wear performance between carbon fibers in bonding process. The effects of friction angle, preloaded tension, and friction frequency on the friction properties between carbon fiber bundles were investigated. Solidworks is used to model bonded carbon fiber bundles with a friction angle of 90°, and ABAQUS is used to simulate the friction of the bonded carbon fiber bundle. The experimental results show that stress concentration occurs in the center of the friction area, and the wear degree at the center is more obvious, and the number of fiber breaks at the center was more than that of the side. Friction angle has great influence on friction coefficient, while pre-tensioning and friction frequency had a negligible effect. Based on the above results, when performing variable cross-section 3D weaving, it is recommended to increase the spacing between adjacent carriers and shorten the distance between the weaving chassis and the prefabricated parts. Additionally, it is advised to reduce the pre-added tension on the carrier device and increase the knitting frequency as much as possible within the scope of working conditions. The study results are of great significance for developing 3D weaving devices in terms of theoretical and engineering guidance.

Funder

Shaanxi Provincial Key Research and Development Programme

Shaanxi Qinchuangyuan “Scientist + Engineer” Team Construction Project

Shaanxi Provincial Special Support Programme for Teaching Master Teachers and Leading Talents Project

Science and Technology Directed Project of Xi'an Key Laboratory of Textile Composite Materials

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3