Social Media Activism and Convergence in Tweet Topics After the Initial #MeToo Movement for Two Distinct Groups of Twitter Users

Author:

Baik Jason M.1,Nyein Thet H.1,Modrek Sepideh1ORCID

Affiliation:

1. San Francisco State University, San Francisco, CA, USA

Abstract

Online social media movements are now common and support cultural discussions on difficult health and social topics. The #MeToo movement, focusing on the pervasiveness of sexual assault and harassment, has been one of the largest and most influential online movements. Our study examines topics of conversation on Twitter by supporters of the #MeToo movement and by Twitter users who were uninvolved in the movement to explore the extent to which tweet topics for these two groups converge over time. We identify and collect one year’s worth of tweets for supporters of the #MeToo movement ( N = 168 users; N = 105,538 tweets) and users not involved in the movement ( N = 147 users; N = 112,301 tweets referred to as the Neutral Sample). We conduct topic frequency analysis and implement an unsupervised machine learning topic modeling algorithm, latent Dirichlet allocation, to explore topics of discussion on Twitter for these two groups of users before and after the initial #MeToo movement. Our results suggest that supporters of #MeToo discussed different topics compared to the Neutral Sample of Twitter users before #MeToo with some overlap on politics. The supporters were already discussing sexual assault and harassment issues six months before #MeToo, and discussion on this topic increased 13.7-fold in the six months after. For the Neutral Sample, sexual assault and harassment was not a key topic of discussion on Twitter before #MeToo, but there was some limited increase afterward. Results of bigram frequency analysis and topic modeling showed a clear increase in topic related to gender for the supporters of #MeToo but gave mixed results for the Neutral Sample comparison group. Our results suggest limited shifts in the conversation on Twitter for the Neutral Sample. Our methods and results have implications for measuring the extent to which online social media movements, like #MeToo, reach a broad audience.

Publisher

SAGE Publications

Subject

Applied Psychology,Clinical Psychology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3