High ambient temperature increases intravenous methamphetamine self-administration on fixed and progressive ratio schedules in rats

Author:

Cornish Jennifer L.1,Clemens Kelly J.2,Thompson Murray R.2,Callaghan Paul D.2,Dawson Bronwyn3,McGregor Iain S.2

Affiliation:

1. Neuropharmacology Laboratory, Department of Psychology, Macquarie University, Sydney, Australia,

2. Psychopharmacology Laboratory, School of Psychology, University of Sydney, Sydney, Australia

3. Drugs and Driving Toxicology Laboratory, Division of Analytical Laboratories, Sydney, Australia

Abstract

Methamphetamine is a drug that is often consumed at dance parties or nightclubs where the ambient temperature is high. The present study determined whether such high ambient temperatures alter intravenous methamphetamine self-administration in the rat. Male Hooded Wistar rats were trained to self-administer intravenous methamphetamine (0.1 mg/kg/infusion) under a fixed ratio 1 (FR1) or progressive ratio (PR) schedule of reinforcement at an ambient temperature of 23 ± 1°C. They were then given their daily self-administration session at a raised ambient temperature of 30 ± 1°C. Methamphetamine self-administration was increased at 30°C under both FR1 and PR reinforcement schedules, with the latter effect indicating that heat enhances the motivation to obtain methamphetamine. High temperatures did not alter self-administration of the D1 receptor agonist SKF 82958 in methamphetamine-experienced rats suggesting some specificity in the methamphetamine effect. When rats were given access to drink isotonic saline solution during methamphetamine self-administration sessions they drank much more solution at 30°C than 23°C. However, availability of isotonic saline to drink did not alter the heat-induced facilitation of methamphetamine self-administration (PR schedule) indicating that the heat effect does not simply reflect increased motivation for intravenous fluids. Hyperthermia was evident in rats self-administering methamphetamine at high ambient temperatures and fluid consumption did not prevent this effect. Heat did not affect blood levels of methamphetamine, or its principal metabolite amphetamine indicating that the facilitatory effect of heat did not reflect altered methamphetamine pharmacokinetics. Overall, these results show that high ambient temperatures increase the reinforcing efficacy of methamphetamine and encourage higher levels of drug intake.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3