Acute acetate administration increases endogenous opioid levels in the human brain: A [11C]carfentanil molecular imaging study

Author:

Ashok Abhishekh H12345ORCID,Myers Jim6,Frost Gary6,Turton Samuel67,Gunn Roger N68,Passchier Jan8,Colasanti Alessandro9ORCID,Marques Tiago Reis123,Nutt David6,Lingford-Hughes Anne6,Howes Oliver D123,Rabiner Eugenii A78

Affiliation:

1. Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK

2. Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK

3. Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

4. Department of Radiology, University of Cambridge, Cambridge, UK

5. Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

6. Imperial College London, UK

7. Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, UK

8. Invicro, London, UK

9. Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK

Abstract

Introduction: A recent study has shown that acetate administration leads to a fourfold increase in the transcription of proopiomelanocortin (POMC) mRNA in the hypothalamus. POMC is cleaved to peptides, including β-endorphin, an endogenous opioid (EO) agonist that binds preferentially to the µ-opioid receptor (MOR). We hypothesised that an acetate challenge would increase the levels of EO in the human brain. We have previously demonstrated that increased EO release in the human brain can be detected using positron emission tomography (PET) with the selective MOR radioligand [11C]carfentanil. We used this approach to evaluate the effects of an acute acetate challenge on EO levels in the brain of healthy human volunteers. Methods: Seven volunteers each completed a baseline [11C]carfentanil PET scan followed by an administration of sodium acetate before a second [11C]carfentanil PET scan. Dynamic PET data were acquired over 90 minutes, and corrected for attenuation, scatter and subject motion. Regional [11C] carfentanil BPND values were then calculated using the simplified reference tissue model (with the occipital grey matter as the reference region). Change in regional EO concentration was evaluated as the change in [11C]carfentanil BPND following acetate administration. Results: Following sodium acetate administration, 2.5–6.5% reductions in [11C]carfentanil regional BPND were seen, with statistical significance reached in the cerebellum, temporal lobe, orbitofrontal cortex, striatum and thalamus. Conclusions: We have demonstrated that an acute acetate challenge has the potential to increase EO release in the human brain, providing a plausible mechanism of the central effects of acetate on appetite in humans.

Funder

Medical Research Council

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3