Effect of acute brain tyrosine depletion on MDMA-induced changes in brain 5-HT

Author:

Rodsiri R.1,Green AR1,Marsden CA1,Fone KCF2

Affiliation:

1. School of Biomedical Sciences, Institute of Neuroscience, University of Nottingham, Nottingham, UK

2. School of Biomedical Sciences, Institute of Neuroscience, University of Nottingham, Nottingham, UK,

Abstract

The mechanism by which 3,4-methylenedioxymethamphetamine (MDMA) produces 5-hydroxytryptamine (5-HT, serotonin) neurotoxicity has been suggested to involve an acute release of tyrosine and its non-enzymatic conversion to dopamine. To determine whether brain tyrosine availability is important in MDMA-induced neurotoxicity, brain tyrosine was acutely depleted with a tyrosine-free amino acid mixture (1 g/kg intraperitoneal; twice 1 h apart) which was administered prior to an injection of MDMA (12.5 mg/kg intraperitoneal). A small increase in both the hippocampal and striatal tyrosine concentration occurred in control rats treated with MDMA. The tyrosine-free amino acid mixture significantly decreased tyrosine levels by more than 50% in both brain regions 2 h after injection of either MDMA or saline. MDMA significantly reduced brain 5-HT content 2 h later, but this was of a similar magnitude in control and tyrosine-depleted groups. The long-term neurotoxic 5-HT loss in the hippocampus induced two weeks after MDMA administration was unaltered by the tyrosine-free amino acid mixture. Striatal dopamine content was unaffected by acute MDMA in all groups, while the tyrosine-free amino acid mixture given with MDMA significantly decreased striatal dopamine content 2 weeks later. The tyrosine-free amino acid mixture given alone had no affect on rectal body temperature but attenuated the duration of MDMA-induced hyperthermia. The results confirmed the ability of systemic MDMA to acutely increase brain tyrosine content, but also indicated that a marked acute reduction of brain tyrosine does not directly affect either immediate 5-HT release (as measured by tissue depletion) or long-term hippocampal serotonergic neurotoxicity produced by MDMA.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3