Temporal dissociation of phencyclidine: Induced locomotor and social alterations in rats using an automated homecage monitoring system – implications for the 3Rs and preclinical drug discovery

Author:

Mitchell Emma J1,Brett Ros R1,Armstrong J Douglas23,Sillito Rowland R3,Pratt Judith A1ORCID

Affiliation:

1. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK

2. School of Informatics, University of Edinburgh, Edinburgh, UK

3. Actual Analytics Ltd, Edinburgh, UK

Abstract

Background: Rodent behavioural assays are widely used to delineate the mechanisms of psychiatric disorders and predict the efficacy of drug candidates. Conventional behavioural paradigms are restricted to short time windows and involve transferring animals from the homecage to unfamiliar apparatus which induces stress. Additionally, factors including environmental perturbations, handling and the presence of an experimenter can impact behaviour and confound data interpretation. To improve welfare and reproducibility these issues must be resolved. Automated homecage monitoring offers a more ethologically relevant approach with reduced experimenter bias. Aim: To evaluate the effectiveness of an automated homecage system at detecting locomotor and social alterations induced by phencyclidine (PCP) in group-housed rats. PCP is an N-methyl-D-aspartate (NMDA) receptor antagonist commonly utilised to model aspects of schizophrenia. Methods: Rats housed in groups of three were implanted with radio frequency identification (RFID) tags. Each homecage was placed over a RFID reader baseplate for the automated monitoring of the social and locomotor activity of each individual rat. For all rats, we acquired homecage data for 24 h following administration of both saline and PCP (2.5 mg/kg). Results: PCP resulted in significantly increased distance travelled from 15 to 60 min post injection. Furthermore, PCP significantly enhanced time spent isolated from cage mates and this asociality occured from 60 to 105 min post treatment. Conclusions: Unlike conventional assays, in-cage monitoring captures the temporal duration of drug effects on multiple behaviours in the same group of animals. This approach could benefit psychiatric preclinical drug discovery through improved welfare and increased between-laboratory replicability.

Funder

national centre for the replacement refinement and reduction of animals in research

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3