A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia

Author:

Rizig Mie A1,McQuillin Andrew1,Ng Aylwin2,Robinson Michelle3,Harrison Andrew4,Zvelebil Marketa5,Hunt Steve P3,Gurling Hugh M1

Affiliation:

1. Molecular Psychiatry Laboratory, University College London, London, UK

2. Bioinformatics and Systems Biology Group, Ludwig Institute for Cancer Research, University College London, London, UK

3. Department of Cell and Developmental Biology, University College London, London, UK

4. Department of Mathematical Sciences, University of Essex, Colchester, UK

5. Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, UK

Abstract

Clozapine has markedly superior clinical properties compared to other antipsychotic drugs but the side effects of agranulocytosis, weight gain and diabetes limit its use. The reason why clozapine is more effective is not well understood. We studied messenger RNA (mRNA) gene expression in the mouse brain to identify pathways changed by clozapine compared to those changed by haloperidol so that we could identify which changes were specific to clozapine. Data interpretation was performed using an over-representation analysis (ORA) of gene ontology (GO), pathways and gene-by-gene differences. Clozapine significantly changed gene expression in pathways related to neuronal growth and differentiation to a greater extent than haloperidol; including the microtubule-associated protein kinase (MAPK) signalling and GO terms related to axonogenesis and neuroblast proliferation. Several genes implicated genetically or functionally in schizophrenia such as frizzled homolog 3 (FZD3), U2AF homology motif kinase 1 (UHMK1), pericentriolar material 1 (PCM1) and brain-derived neurotrophic factor (BDNF) were changed by clozapine but not by haloperidol. Furthermore, when compared to untreated controls clozapine specifically regulated transcripts related to the glutamate system, microtubule function, presynaptic proteins and pathways associated with synaptic transmission such as clathrin cage assembly. Compared to untreated controls haloperidol modulated expression of neurotoxic and apoptotic responses such as NF-kappa B and caspase pathways, whilst clozapine did not. Pathways involving lipid and carbohydrate metabolism and appetite regulation were also more affected by clozapine than by haloperidol.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3