Repeated administrations of dopamine receptor agents affect lithium-induced state-dependent learning in mice

Author:

Zarrindast MR1,Madadi F2,Ahmadi S3

Affiliation:

1. Department of Pharmacology, School of Medicine and Iranian National Centre for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Studies in Theoretical Physics and Mathematics, School of Cognitive Sciences, Tehran, Iran; Institute for Cognitive Science Studies, Tehran, Iran

2. Department of Basic Sciences, Tehran North Unit, Azad University, Tehran, Iran

3. Department of Biological Science & Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran

Abstract

Abstract The influence of repeated administration of dopamine receptor agents on the effect of lithium on lithium-induced state-dependent learning was examined in mice. Immediate post-training intraperitoneal (i.p.) administrations of lithium (10 and 20 m/kg) decreased the step-down latency of a single-trial inhibitory avoidance task. This was fully or partly reversed by pre-test administration of the same doses of the drug, with maximum response at the dose of 10 mg/kg, suggesting state-dependent learning was induced by lithium. Here, it has also been shown that repeated intracerebroventricular administrations of a mixed D1/D2 dopamine receptors agonist apomorphine (once daily injections of 0.5 μg/mouse for three consecutive days followed by five days of no drug treatment) increased the effect of lower doses of pre-test lithium (1.25, 2.5 and 5 mg/kg, i.p.) on the reinstatement of the step-down latency decreased by post-training lithium (10 mg/kg). On the contrary, not only repeated administrations of the dopamine D1 receptor antagonist SCH 23390 (0.5 and 1 μg/mouse) but also the dopamine D2 receptor antagonist sulpiride (0.3 and 1 μg/mouse) disrupted the state-dependent learning induced by lithium. These results suggest that state-dependent learning induced by lithium may be altered by repeated pretreatment of dopamine receptor agents.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3