Amphetamine increases aversive conditioning to diffuse contextual stimuli and to a discrete trace stimulus when conditioned at higher footshock intensity

Author:

Norman C.1,Cassaday H. J.2

Affiliation:

1. School of Psychology, University of Nottingham, University Park, Nottingham, UK

2. School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK

Abstract

Amphetamine can increase conditioning to poor predictors of reinforcement in selective learning tasks (e.g. latent inhibition, LI). In the present study, a noise stimulus was contiguous with footshock or presented at a trace interval. A flashing light background stimulus was used to measure contextual conditioning. Experiment 1 used 1.5 mg/kg and 6 mg/kg dl-amphetamine. Experiments 2 and 3 used 0.5 mg/kg and 1.5 mg/kg d-amphetamine. Unconditioned stimuli parameters (intensity, number, duration) were also manipulated from one experiment to the next. Amphetamine consistently increased conditioning to the background stimulus, and increased conditioning to the trace stimulus at higher footshock intensity (Experiment 3). Thus, amphetamine increased conditioning only to relatively uninformative predictors. The effect on conditioning to trace conditioned stimuli depended on the level of reinforcer but increased conditioning to background did not. Throughout, there was no effect of amphetamine on conditioning of the contiguous stimulus. Thus, the results did not simply arise because amphetamine increased conditioning under any condition in which conditioning without amphetamine was poor. The results are discussed in terms of amphetamine effects on breadth of attention and LI to context.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3