Effects of vitamin E supplementation on plasma membrane permeabilization and fluidization induced by chlorpromazine in the rat brain

Author:

Maruoka Nobuyuki1,Murata Tetsuhito2,Omata Naoto1,Takashima Yasuhiro1,Fujibayashi Yasuhisa3,Wada Yuji1

Affiliation:

1. Department of Neuropsychiatry, University of Fukui, Fukui, Japan

2. Department of Neuropsychiatry, University of Fukui, Fukui, Japan, -med.ac.jp

3. Biomedical Imaging Research Center, University of Fukui, Fukui, Japan

Abstract

Neurotransmitter receptors play a key role in most research on antipsychotic drugs, but little is known about the effects of these drugs on the plasma membrane in the central nervous system. Therefore, we investigated whether chlorpromazine (CPZ), a typical phenothiazine antipsychotic drug, affects the plasma membrane integrity in the rat brain, and if so, whether these membrane alterations can be prevented by dietary supplementation with vitamin E, which has been shown to be an antioxidant and also a membrane-stabilizer. Leakage of [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG)-6-phosphate from rat striatal slices and decrease in 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy were used as indexes for plasma membrane permeabilization and fluidization, respectively. CPZ induced leakage of [18F]FDG-6-phosphate from striatal slices, and the leakage was delayed in the vitamin E-supplemented group compared to that in the normal diet group. The decrease in plasma membrane anisotropy induced by CPZ was significantly attenuated by vitamin E supplementation. Chronic treatment with α-phenyl-N-tert-butyl nitrone, a free radical scavenger, had no effect on CPZ-induced plasma membrane permeabilization, and the treatment with CPZ did not induce lipid peroxidation. CPZ can reduce plasma membrane integrity in the brain, and this reduction can be prevented by vitamin E via its membrane-stabilizing properties, not via its antioxidant activity.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3