Agreement in anterior segment measurements between swept-source and Scheimpflug-based optical biometries in keratoconic eyes: a pilot study

Author:

Chalkiadaki Evangelia1ORCID,Gartaganis Panos S.2,Ntravalias Thomas2,Giannakis Ioannis2,Manousakis Evangelos2,Karmiris Efthymios2

Affiliation:

1. Department of Ophthalmology, 251 Hellenic Airforce General Hospital, Hpeirou 36, Agia Paraskeyi 15341, Greece

2. Department of Ophthalmology, 251 Hellenic Airforce General Hospital, Athens, Greece

Abstract

Background: Cataract surgery in keratoconic patients is challenging because of the corneal distortion, which can lead to inaccurate keratometry readings. This study is a comparison of the accuracy of keratometry readings by two types of devices in a tertiary hospital. Purpose: To evaluate the comparability of corneal power measurements, anterior chamber depth (ACD), and white-to-white (WTW) distance between Scheimpflug-based tomography (Pentacam AXL; OCULUS GmbH, Wetzlar, Germany) and swept-source optical biometry (IOLMaster 700; Carl Zeiss Meditec AG, Jena, Germany) in patients with keratoconus. Methods: This pilot, prospective, interinstrument reliability study included 30 keratoconic eyes of 15 individuals who had not undergone any kind of corneal surgery. Standard K and total refractive power (TK®) of the flattest and steepest axes of the IOLMaster 700 were compared with the standard keratometry (SimK), true net power (TNP), equivalent keratometer readings (EKR), and total corneal refractive power (TCRP) of the Pentacam. The Bland–Altman analysis was used to evaluate the agreement between the measurements of both devices. The paired-samples t-test and the Wilcoxon signed-rank test were performed to compare the mean values of the variables obtained with the devices. Results: The K1 value of the IOLMaster 700 was significantly higher from EKR K1 along the 3-mm (mean difference: 0.79 diopters, p = 0.01), 4-mm (mean difference: 1.01 D, p = 0.01), and 4.5-mm zones (mean difference: 1.20 D, p = 0.01) and TNP K1 along the 3-mm (mean difference: 0.88 D, p < 0.001) and 4-mm zones (mean difference: 0.97 D, p < 0.001). The TK1 value was significantly higher from EKR K1 along the 2-mm (mean difference: 0.42 D, p = 0.04), 3-mm (mean difference: 0.83 D, p = 0.003), 4-mm (mean difference: 1.05 D, p = 0.004), and 4.5-mm zones (mean difference: 1.24 D, p = 0.005) and TNP K1 along the 3-mm (mean difference: 0.92 D, p < 0.001) and 4-mm zones (mean difference: 1.01 D, p < 0.001). The K2 value of the IOLMaster 700 was significantly higher from TK2 (mean difference: 0.11 D, p = 0.04) and all the corresponding variables of the Pentacam device. The TK2 value was significantly higher from all the corresponding variables of the Pentacam device. The Pentacam also yielded significantly lower values for the WTW distance (mean difference: 0.31 mm, p < 0.001) and no significant difference in terms of ACD values ( p = 0.9). Conclusion: The IOLMaster measured significantly greater keratometry readings in the steep axis for all the variables studied. The keratometry and WTW measurements of the investigated devices cannot be used interchangeably in keratoconus.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3