Affiliation:
1. Department of Computer Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey
2. Department of Neurology, Faculty of Medicine, Başkent University, Ankara, Turkey
Abstract
Neurodegenerative diseases occur because of degeneration in brain cells but can manifest as impairment of motor functions. One of the side effects of this impairment is an abnormality in walking. With the development of sensor technologies and artificial intelligence applications in recent years, the disease severity of patients can be estimated using their gait data. In this way, decision support applications for grading the severity of the disease that the patient suffers in the clinic can be developed. Thus, patients can have treatment methods more suitable for the severity of the disease. The presented research proposes a deep learning-based approach using gait data represented by a Quick Response code to develop an effective and reliable disease severity grading system for neurodegenerative diseases such as amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. The two-dimensional Quick Response data set was created by converting each one-dimensional gait data of the subjects with a novel representation approach to a Quick Response code. This data set was regressed with the convolutional neural network deep learning method, and a solution was sought for the problem of grading disease severity. Further, to demonstrate the success of the results obtained with the novel approach, native machine learning approaches such as Multilayer Perceptron, Random Forest, Extremely Randomized Trees, and K-Nearest Neighbours, and ensemble machine learning methods, such as voting and stacking, were applied on one-dimensional data. Finally, the results obtained on the prediction of disease severity by testing one-dimensional gait data with a convolutional neural network architecture that operates on one-dimensional data were included. The results showed that, in most cases, the two-dimensional convolutional neural network approach performed the best among all methods.
Funder
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
Subject
Health Information Management,Computer Science Applications,Health Informatics,Health Policy
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献