CNN-based severity prediction of neurodegenerative diseases using gait data

Author:

Berke Erdaş Çağatay1ORCID,Sümer Emre1,Kibaroğlu Seda2

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey

2. Department of Neurology, Faculty of Medicine, Başkent University, Ankara, Turkey

Abstract

Neurodegenerative diseases occur because of degeneration in brain cells but can manifest as impairment of motor functions. One of the side effects of this impairment is an abnormality in walking. With the development of sensor technologies and artificial intelligence applications in recent years, the disease severity of patients can be estimated using their gait data. In this way, decision support applications for grading the severity of the disease that the patient suffers in the clinic can be developed. Thus, patients can have treatment methods more suitable for the severity of the disease. The presented research proposes a deep learning-based approach using gait data represented by a Quick Response code to develop an effective and reliable disease severity grading system for neurodegenerative diseases such as amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. The two-dimensional Quick Response data set was created by converting each one-dimensional gait data of the subjects with a novel representation approach to a Quick Response code. This data set was regressed with the convolutional neural network deep learning method, and a solution was sought for the problem of grading disease severity. Further, to demonstrate the success of the results obtained with the novel approach, native machine learning approaches such as Multilayer Perceptron, Random Forest, Extremely Randomized Trees, and K-Nearest Neighbours, and ensemble machine learning methods, such as voting and stacking, were applied on one-dimensional data. Finally, the results obtained on the prediction of disease severity by testing one-dimensional gait data with a convolutional neural network architecture that operates on one-dimensional data were included. The results showed that, in most cases, the two-dimensional convolutional neural network approach performed the best among all methods.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3