Investigating the mechanical effect of the sagittal angle of the cervical facet joint on the cervical intervertebral disc

Author:

Weng Rui12,Huang Xue-Cheng3,Ye Lin-Qiang4,Yang Ce-Kai5,Cai Zhuo-Yan5,Xu Yue-Rong5,Cui Jian-Chao5,Yi Sheng-Hui6,Liang De5,Yao Zhen-Song57ORCID

Affiliation:

1. Department of Spinal Surgery, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, China

2. Guangdong Research Institute for Orthopedics & Traumatology of Chinese Medicine, China

3. Department of Spinal Surgery, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), China

4. Department of Spinal Surgery, Dongguan Hospital of Traditional Chinese Medicine, China

5. Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China

6. Department of Spinal Surgery, Yueyang Hospital of Traditional Chinese Medicine, China

7. Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China

Abstract

Background Facet tropism is defined as the asymmetry between the left and right facet joints relative to the sagittal plane. Published clinical studies have found that facet tropism is associated with cervical disc herniation. However, the relationship between the facet orientation and the side of cervical disc herniation remains controversial. Therefore, this study used the finite-element technique to investigate the biomechanical effects of the sagittal angle of the cervical facet joints on the cervical intervertebral disc. Objective The biomechanical effects of the sagittal angle of the cervical facet joint on the cervical disc and facet joint were investigated using the finite-element technique. Methods The finite-element model was constructed using computed tomography scans of a 26-year-old female volunteer. First, a cervical model was constructed from C3 to C7. The model was verified using data from previously published studies. Second, the facet orientation at the C5–C6 level was altered to simulate different sagittal angles of cervical facet joints. Five models, F70, F80, F90, F100, and F110, were simulated with different facet joint orientations (70°, 80°, 90°, 100°, and 110° facet joint angles at the left side, respectively, and 90° facet joint angles at the right side) at the C5–C6 facet joints. In each model, annular fibres stress and facet cartilage pressure were studied under six pure moments and two combined moments. Results Comparing the stress of the annulus fibres in flexion combined with right axial rotation and in flexion combined with left axial rotation in the same model, no difference in the maximum stress of the annulus fibres was noted between these two different moments in the F90 model, whereas differences of 12.80%, 8.84%, 14.95% and 33.32% were noted in the F70, F80, F100 and F110 models, respectively. The same trend was observed when comparing the maximum stress of the annulus fibres in each model during left and right axial rotation. No differences in annular fibres stress and facet cartilage pressure were noted among the five models in flexion, extension, lateral bending, left axial rotation, and flexion combined with left axial rotation in this study. However, compared with the F70 model in flexion combined with right axial rotation, the annulus fibres stress of the F80, F90, F100, and F110 models increased by 5.53%, 13.03%, 35.04%, and 72.94%, respectively, and the pressure of the left facet joint of these models decreased by 5.65%, 12.10%, 18.41%, and 25.74%, respectively. The same trend was observed in the right axial moment. Conclusion Facet tropism leads to unbalanced stress distribution on the annulus fibres at the cervical intervertebral disc. The greater the sagittal angle of the facet joint, the greater the annular fibres stress on this side. We hypothesised that the side with the larger sagittal angle of the facet joint exhibits a greater risk of disc herniation.

Funder

Dongguan Social Science and Technology Development Project

National Natural Science Foundation of China Youth Fund

Guangdong Basic and Applied Basic Research Foundation

High-level Surgery Key Construction Project of Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital funds

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3