LWSleepNet: A lightweight attention-based deep learning model for sleep staging with singlechannel EEG

Author:

Yang Chenguang12ORCID,Li Baozhu3,Li Yamei1,He Yixuan2,Zhang Yuan1

Affiliation:

1. College of Electronic and Information Engineering, Southwest University, Chongqing, China

2. WESTA College, Southwest University, Chongqing, China

3. Internet of Things and Smart City Innovation Platform, Zhuhai Fudan Innovation Institute, Zhuhai, China

Abstract

Introduction Sleep is vital to human health, and sleep staging is an essential process in sleep assessment. However, manual classification is an inefficient task. Along with the increased demand for portable sleep quality detection devices, lightweight automatic sleep staging needs to be developed. Methods This study proposes a novel attention-based lightweight deep learning model called LWSleepNet. A depthwise separable multi-resolution convolutional neural network is introduced to analyze the input feature map and captures features at multiple frequencies using two different sized convolutional kernels. The temporal feature extraction module divides the input into patches and feeds them into a multi-head attention block to extract time-dependent information from sleep recordings. The model's convolution operations are replaced with depthwise separable convolutions to minimize its number of parameters and computational cost. The model's performance on two public datasets (Sleep-EDF-20 and Sleep-EDF-78) was evaluated and compared with those of previous studies. Then, an ablation study and sensitivity analysis were performed to evaluate further each module. Results LWSleepNet achieves an accuracy of 86.6% and Macro-F1 score of 79.2% for the Sleep-EDF-20 dataset and an accuracy of 81.5% and Macro-F1 score of 74.3% for the Sleep-EDF-78 dataset with only 55.3 million floating-point operations per second and 180 K parameters. Conclusion On two public datasets, LWSleepNet maintains excellent prediction performance while substantially reducing the number of parameters, demonstrating that our proposed Light multiresolution convolutional neural network and temporal feature extraction modules can provide excellent portability and accuracy and can be easily integrated into portable sleep monitoring devices.

Funder

Chongqing Municipal Development and Reform Commission

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3