Using less keystrokes to achieve high top-1 accuracy in Chinese clinical text entry

Author:

Li Tao1,Yu Lei1,Zhou Liang1,Wang Panzhang1ORCID

Affiliation:

1. Information Technology Department, Shanghai Sixth People's Hospital, Shanghai, China

Abstract

Background As a routine task, physicians spend substantial time and keystrokes on text entry. Documentation burden is increasingly associated with physician burnout. Predicting at top-1 with less keystrokes (TLKs) is a hot topic for smart text entry. In Western countries, contextual autocomplete is deployed to alleviate the burden. Chinese text entry is intercepted by input method engines (IMEs), which cut off suggestions from electronic health records (EHRs). Objective To explore a user-friendly approach to make text entry easier and faster for Chinese physicians. Methods Physicians were shadowed to uncover the real-word input behaviors. System logs were collected for behavior validation and then used for context-based learning. An in-line web-based popup layer was proposed to hold the best suggestion from EHRs. Keystrokes per character and TLK rate were evaluated quantitatively. Questionnaires were used for qualitative assessment. Nine hundred fifty-two physicians were enrolled in a field testing. Results 14 facilitators and 17 barriers related to IMEs were identified after shadowing. With system logs, physicians tended to split long words into short units, which were 1–4 in length. 81.7% of these units were disyllables. Compared to the control group, the intervention group improved TLK rate by 40.3% ( p < .0001), and reduced keystrokes per character by 48.3% ( p < .0001). Survey results also promised positive feedback from physicians. Conclusions Keystroke burden and frequent choice reaction time challenge Chinese physicians for text entry. The proposed system demonstrates an approach to alleviate the burden. Contextual information is easily retrieved and it further helps improve the top-1 accuracy, with a smaller number of keystrokes. While positive feedback is received, it promises a benefit to protect patient privacy.

Funder

Shanghai Sixth People's Hospital

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring Documentation Burden in Healthcare;Journal of General Internal Medicine;2024-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3