Artificial intelligence applications in bone fractures: A bibliometric and science mapping analysis

Author:

Zhong Sen1,Yin Xiaobing2,Li Xiaolan3,Feng Chaobo4,Gao Zhiqiang5,Liao Xiang4,Yang Sheng1,He Shisheng1ORCID

Affiliation:

1. Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China

2. Nursing Department, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China

3. Fuzhou Medical College of Nanchang University, School of Stomatology, Fuzhou, China

4. National Key Clinical Pain Medicine of China, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China

5. Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China

Abstract

Background Bone fractures are a common medical issue worldwide, causing a serious economic burden on society. In recent years, the application of artificial intelligence (AI) in the field of fracture has developed rapidly, especially in fracture diagnosis, where AI has shown significant capabilities comparable to those of professional orthopedic surgeons. This study aimed to review the development process and applications of AI in the field of fracture using bibliometric analysis, while analyzing the research hotspots and future trends in the field. Materials and methods Studies on AI and fracture were retrieved from the Web of Science Core Collections since 1990, a retrospective bibliometric and visualized study of the filtered data was conducted through CiteSpace and Bibliometrix R package. Results A total of 1063 publications were included in the analysis, with the annual publication rapidly growing since 2017. China had the most publications, and the United States had the most citations. Technical University of Munich, Germany, had the most publications. Doornberg JN was the most productive author. Most research in this field was published in Scientific Reports. Doi K's 2007 review in Computerized Medical Imaging and Graphics was the most influential paper. Conclusion AI application in fracture has achieved outstanding results and will continue to progress. In this study, we used a bibliometric analysis to assist researchers in understanding the basic knowledge structure, research hotspots, and future trends in this field, to further promote the development of AI applications in fracture.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

the Nanshan District Health Science and Technology Project

National Key Research and Development Program of China

Yunnan Academician Expert Workstation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3