Automated machine learning-based prediction of the progression of knee pain, functional decline, and incidence of knee osteoarthritis in individuals at high risk of knee osteoarthritis: Data from the osteoarthritis initiative study

Author:

Chen Tianrong1,Or Calvin Kalun1ORCID

Affiliation:

1. Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China

Abstract

Objective This study aimed to examine the performance of machine learning models in predicting the progression of knee pain, functional decline, and incidence of knee osteoarthritis (OA) in high-risk individuals, with automated machine learning (AutoML) being used to automate the prediction process. Design There were four stages in the process of our AutoML-integrated prediction. Stage 1—Data preparation: The data of 3200 eligible individuals in the Osteoarthritis Initiative (OAI) study who were considered at high risk of knee OA at the baseline visit were extracted and used. Specifically, 1094 variables from the OAI study were used to predict the changes in knee pain, physical function, and incidence of knee OA (i.e. the first occurrence of frequent knee symptoms and definite tibial osteophytes (Kellgren and Lawrence grade ≥2)) over a 9-year period. Stage 2—Model training: The AutoML approach was used to automatically train nine widely used machine learning (ML) models. Stage 3—Model testing: The AutoML approach was used to automatically test the performance of the ML models. Stage 4—Selection of important input variables: The AutoML approach automated the process of computing the importance scores of all input variables and identifying the most important ones, using the technique of permutation feature importance. Results Using the AutoML approach, the weighted ensemble model and the CatBoost model showed the best performance among all nine ML models. For the prediction of each outcome in each year, the five most important input variables were identified, most of which were obtained from self-reported questionnaire surveys and radiographic imaging reports. Conclusion The AutoML approach has shown potential in automating the process of using ML models to predict long-term changes in knee OA-related outcomes. Its use could support the deployment of ML solutions, facilitating the provision of personalized interventions to prevent the deterioration of knee health and incident knee OA.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3