Deep learning-enhanced diabetic retinopathy image classification

Author:

Alwakid Ghadah1,Gouda Walaa2,Humayun Mamoona3ORCID,Jhanjhi Noor Zaman4ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia

2. Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt

3. Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia

4. School of Computer Sciences, Taylor's University, Subang Jaya, Malaysia

Abstract

Objective Diabetic retinopathy (DR) can sometimes be treated and prevented from causing irreversible vision loss if caught and treated properly. In this work, a deep learning (DL) model is employed to accurately identify all five stages of DR. Methods The suggested methodology presents two examples, one with and one without picture augmentation. A balanced dataset meeting the same criteria in both cases is then generated using augmentative methods. The DenseNet-121-rendered model on the Asia Pacific Tele-Ophthalmology Society (APTOS) and dataset for diabetic retinopathy (DDR) datasets performed exceptionally well when compared to other methods for identifying the five stages of DR. Results Our propose model achieved the highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100% for the APTOS dataset, and the highest test accuracy of 79.67%, top-2 accuracy of 92.%76, and top-3 accuracy of 98.94% for the DDR dataset. Additional criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model were established with the help of APTOS and DDR. Conclusions It was discovered that feeding a model with higher-quality photographs increased its efficiency and ability for learning, as opposed to both state-of-the-art technology and the other, non-enhanced model.

Funder

Ministry of Education in Saudi Arabia

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3