A hybrid forecasting technique for infection and death from the mpox virus

Author:

Iftikhar Hasnain1,Daniyal Muhammad2ORCID,Qureshi Moiz3,Tawiah Kassim45ORCID,Ansah Richard Kwame46,Afriyie Jonathan Kwaku5

Affiliation:

1. Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

2. Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

3. Department of Statistics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Pakistan

4. Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana

5. Department of Statistics and Actuarial Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

6. Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

Objectives The rising of new cases and death counts from the mpox virus (MPV) is alarming. In order to mitigate the impact of the MPV it is essential to have information of the virus's future position using more precise time series and stochastic models. In this present study, a hybrid forecasting system has been developed for new cases and death counts for MPV infection using the world daily cumulative confirmed and death series. Methods The original cumulative series was decomposed into new two subseries, such as a trend component and a stochastic series using the Hodrick–Prescott filter. To assess the efficacy of the proposed models, a comparative analysis with several widely recognized benchmark models, including auto-regressive (AR) model, auto-regressive moving average (ARMA) model, non-parametric auto-regressive (NPAR) model and artificial neural network (ANN), was performed. Results The introduction of two novel hybrid models, [Formula: see text] and [Formula: see text], which demonstrated superior performance compared to all other models, as evidenced by their remarkable results in key performance indicators such as root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), is a significant advancement in disease prediction. Conclusion The new models developed can be implemented in forecasting other diseases in the future. To address the current situation effectively, governments and stakeholders must implement significant changes to ensure strict adherence to standard operating procedures (SOPs) by the public. Given the anticipated continuation of increasing trends in the coming days, these measures are essential for mitigating the impact of the outbreak.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3