Combining ecological momentary assessment, wrist-based eating detection, and dietary assessment to characterize dietary lapse: A multi-method study protocol

Author:

Goldstein Stephanie P1ORCID,Hoover Adam2,Evans E Whitney1,Thomas J Graham1

Affiliation:

1. The Miriam Hospital Weight Control and Diabetes Research Center, Providence, USA

2. Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, USA

Abstract

Objectives Behavioral obesity treatment (BOT) produces clinically significant weight loss and health benefits for many individuals with overweight/obesity. Yet, many individuals in BOT do not achieve clinically significant weight loss and/or experience weight regain. Lapses (i.e., eating that deviates from the BOT prescribed diet) could explain poor outcomes, but the behavior is understudied because it can be difficult to assess. We propose to study lapses using a multi-method approach, which allows us to identify objectively-measured characteristics of lapse behavior (e.g., eating rate, duration), examine the association between lapse and weight change, and estimate nutrition composition of lapse. Method We are recruiting participants (n = 40) with overweight/obesity to enroll in a 24-week BOT. Participants complete biweekly 7-day ecological momentary assessment (EMA) to self-report on eating behavior, including dietary lapses. Participants continuously wear the wrist-worn ActiGraph Link to characterize eating behavior. Participants complete 24-hour dietary recalls via structured interview at 6-week intervals to measure the composition of all food and beverages consumed. Results While data collection for this trial is still ongoing, we present data from three pilot participants who completed EMA and wore the ActiGraph to illustrate the feasibility, benefits, and challenges of this work. Conclusion This protocol will be the first multi-method study of dietary lapses in BOT. Upon completion, this will be one of the largest published studies of passive eating detection and EMA-reported lapse. The integration of EMA and passive sensing to characterize eating provides contextually rich data that will ultimately inform a nuanced understanding of lapse behavior and enable novel interventions. Trial registration: Registered clinical trial NCT03739151; URL: https://clinicaltrials.gov/ct2/show/NCT03739151

Funder

National Heart, Lung, and Blood Institute

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3