Affiliation:
1. Department of Mathematics and Computer Science, Suffolk University, Boston, USA
2. Department of Psychology, Suffolk University, Boston, USA
Abstract
People who engage in non-suicidal self-injury (NSSI) often conceal their practices, which limits examination and understanding of their engagement. The goal of this research is to utilize data from public online social networks (namely, LiveJournal, a major blogging social networking site) to observe the NSSI population in a naturally occurring setting. Specifically, the focus of this paper is the interests publicly declared by LiveJournal users. In the course of study, we collected the self-declared interests of 25,000 users who are members of or participate in 139 NSSI-related communities. We constructed a family of semantic networks of interests based on their similarity. The semantic networks are structured and contain several dense clusters—semantic domains—that include NSSI-specific interests (such as self-injury and razor), references to music performers (such as evanescence), and general daily life and creativity related interests (such as poetry and friendship). Assuming users are genuine in their declarations, the clusters reveal distinct patterns of interest and may signal keys to NSSI.
Subject
Health Information Management,Computer Science Applications,Health Informatics,Health Policy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献