Novel method combining multiscale attention entropy of overnight blood oxygen level and machine learning for easy sleep apnea screening

Author:

Liang Zilu1ORCID

Affiliation:

1. Kyoto University of Advanced Science (KUAS), Japan

Abstract

Objective Sleep apnea is a common sleep disorder affecting a significant portion of the population, but many apnea patients remain undiagnosed because existing clinical tests are invasive and expensive. This study aimed to develop a method for easy sleep apnea screening. Methods Three supervised machine learning algorithms, including logistic regression, support vector machine, and light gradient boosting machine, were applied to develop apnea screening models at two apnea–hypopnea index cutoff thresholds: [Formula: see text] 5 and [Formula: see text] 30 events/hours. The SpO2 recordings of the Sleep Heart Health Study database ( N = 5786) were used for model training, validation, and test. Multiscale entropy analysis was performed to derive a set of multiscale attention entropy features from the SpO2 recordings. Demographic features including age, sex, body mass index, and blood pressure were also used. The dependency among the multiscale attention entropy features were handled with the independent component analysis. Results For cutoff [Formula: see text] 5/hours, logistic regression model achieved the highest Matthew’s correlation coefficient (0.402) and area under the curve (0.747), and reasonably good sensitivity (75.38%), specificity (74.02%), and positive predictive value (92.94%). For cutoff [Formula: see text] 30/hours, support vector machine model achieved the highest Matthew’s correlation coefficient (0.545) and area under the curve (0.823), and good sensitivity (82.00%), specificity (82.69%), and negative predictive value (95.53%). Conclusions Our models achieved better performance than existing methods and have the potential to be integrated with home-use pulse oximeters.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3