Application of machine learning algorithms in classifying postoperative success in metabolic bariatric surgery: Acomprehensive study

Author:

Benítez-Andrades José Alberto1ORCID,Prada-García Camino23ORCID,García-Fernández Rubén4,Ballesteros-Pomar María D5ORCID,González-Alonso María-Inmaculada4,Serrano-García Antonio6ORCID

Affiliation:

1. SALBIS Research Group, Department of Electric, Systems and Automatics Engineering, Universidad de León, León, Spain

2. Department of Preventive Medicine and Public Health, University of Valladolid, Valladolid, Spain

3. Dermatology Service, Complejo Asistencial Universitario de León, León, Spain

4. Department of Electric, Systems and Automatics Engineering, Escuela de Ingenierías Industrial, Informática y Aeroespacial, Universidad de León, León, Spain

5. Department of Endocrinology and Nutrition, Complejo Asistencial Universitario de León, León, Spain

6. Psychiatry Service, Department of Psychosomatic, Complejo Asistencial Universitario de León, León, Spain

Abstract

Objectives Metabolic bariatric surgery is a critical intervention for patients living with obesity and related health issues. Accurate classification and prediction of patient outcomes are vital for optimizing treatment strategies. This study presents a novel machine learning approach to classify patients in the context of metabolic bariatric surgery, providing insights into the efficacy of different models and variable types. Methods Various machine learning models, including Gaussian Naive Bayes, Complement Naive Bayes, K-nearest neighbour, Decision Tree, K-nearest neighbour with RandomOverSampler, and K-nearest neighbour with SMOTE, were applied to a dataset of 73 patients. The dataset, comprising psychometric, socioeconomic, and analytical variables, was analyzed to determine the most efficient predictive model. The study also explored the impact of different variable groupings and oversampling techniques. Results Experimental results indicate average accuracy values as high as 66.7% for the best model. Enhanced versions of K-nearest neighbour and Decision Tree, along with variations of K-nearest neighbour such as RandomOverSampler and SMOTE, yielded the best results. Conclusions The study unveils a promising avenue for classifying patients in the realm of metabolic bariatric surgery. The results underscore the importance of selecting appropriate variables and employing diverse approaches to achieve optimal performance. The developed system holds potential as a tool to assist healthcare professionals in decision-making, thereby enhancing metabolic bariatric surgery outcomes. These findings lay the groundwork for future collaboration between hospitals and healthcare entities to improve patient care through the utilization of machine learning algorithms. Moreover, the findings suggest room for improvement, potentially achievable with a larger dataset and careful parameter tuning.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3