Firefly-SVM predictive model for breast cancer subgroup classification with clinicopathological parameters

Author:

Sarkar Suvobrata1ORCID,Mali Kalyani2

Affiliation:

1. Department of Computer Science and Engineering, Dr. B.C. Roy Engineering College, Durgapur, West Bengal, India

2. Department of Computer Science and Engineering, University of Kalyani, Kalyani, West Bengal, India

Abstract

Background Breast cancer is a highly predominant destructive disease among women characterised with varied tumour biology, molecular subgroups and diverse clinicopathological specifications. The potentiality of machine learning to transform complex medical data into meaningful knowledge has led to its application in breast cancer detection and prognostic evaluation. Objective The emergence of data-driven diagnostic model for assisting clinicians in diagnostic decision making has gained an increasing curiosity in breast cancer identification and analysis. This motivated us to develop a breast cancer data-driven model for subtype classification more accurately. Method In this article, we proposed a firefly-support vector machine (SVM) breast cancer predictive model that uses clinicopathological and demographic data gathered from various tertiary care cancer hospitals or oncological centres to distinguish between patients with triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC). Results The results of the firefly-support vector machine (firefly-SVM) predictive model were distinguished from the traditional grid search-support vector machine (Grid-SVM) model, particle swarm optimisation-support vector machine (PSO-SVM) and genetic algorithm-support vector machine (GA-SVM) hybrid models through hyperparameter tuning. The findings show that the recommended firefly-SVM classification model outperformed other existing models in terms of prediction accuracy (93.4%, 86.6%, 69.6%) for automated SVM parameter selection. The effectiveness of the prediction model was also evaluated using well-known metrics, such as the F1-score, mean square error, area under the ROC curve, logarithmic loss and precision–recall curve. Conclusion Firefly-SVM predictive model may be treated as an alternate tool for breast cancer subgroup classification that would benefit the clinicians for managing the patient with proper treatment and diagnostic outcome.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3