Multi-regional COVID-19 epidemic forecast in Sweden

Author:

Xing Yihan1,Gaidai Oleg2ORCID

Affiliation:

1. Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, Stavanger, Norway

2. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai, China

Abstract

The novel coronavirus disease 2019 (COVID-19) is a contagious disease with high transmissibility to spread worldwide, reported to present a certain burden on worldwide public health. This study aimed to determine epidemic occurrence probability at any reasonable time horizon in any region of interest by applying modern novel statistical methods directly to raw clinical data. This paper describes a novel bio-system reliability approach, particularly suitable for multi-regional health and stationary environmental systems, observed over a sufficient period of time, resulting in a reliable long-term forecast of the highly pathogenic virus outbreak probability. For this study, COVID-19 daily recorded patient numbers in most affected Sweden regions were chosen. This work aims to benchmark state-of-the-art methods, making it possible to extract necessary information from dynamically observed patient numbers while considering relevant territorial mapping. The method proposed in this paper opens up the possibility of accurately predicting epidemic outbreak probability for multi-regional biological systems. Based on their clinical survey data, the suggested methodology can be used in various public health applications. Key findings are: A novel spatiotemporal health system reliability method has been developed and applied to COVID-19 epidemic data. Accurate multi-regional epidemic occurrence prediction is made. Epidemic threshold confidence bands given.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Reference38 articles.

1. Using Extreme Value Theory Approaches to Forecast the Probability of Outbreak of Highly Pathogenic Influenza in Zhejiang, China

2. World Health Organization. Influenza Fact Sheet. 2014 Mar [cited 10 June 2014]. Geneva: World Health Organization. Available at: http://www.who.int/mediacentre/factsheets/fs211/en/index.html

3. Piezoelectric Energy Harvester Response Statistics

4. Mathematical Analysis of Random Noise

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3