Identifying metabolic dysfunction-associated steatotic liver disease in patients with hypertension and pre-hypertension: An interpretable machine learning approach

Author:

Chen Chen12,Zhang Wenkang34ORCID,Yan Gaoliang3,Tang Chengchun34

Affiliation:

1. School of Cyber Science and Engineering, Southeast University, Nanjing, Jiangsu, China

2. School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, China

3. Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China

4. School of Medicine, Southeast University, Nanjing, Jiangsu, China

Abstract

Objective Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most prevalent liver diseases and is associated with pre-hypertension and hypertension. Our research aims to develop interpretable machine learning (ML) models to accurately identify MASLD in hypertensive and pre-hypertensive populations. Methods The dataset for 4722 hypertensive and pre-hypertensive patients is from subjects in the NAGALA study. Six ML models, including the decision tree, K-nearest neighbor, gradient boosting, naive Bayes, support vector machine, and random forest (RF) models, were used in this study. The optimal model was constructed according to the performances of models evaluated by K-fold cross-validation ( k = 5), the area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, sensitivity, specificity, and F1. Shapley additive explanation (SHAP) values were employed for both global and local interpretation of the model results. Results The prevalence of MASLD in hypertensive and pre-hypertensive patients was 44.3% (362 cases) and 28.3% (1107 cases), respectively. The RF model outperformed the other five models with an AUC of 0.889, AP of 0.800, accuracy of 0.819, sensitivity of 0.816, specificity of 0.821, and F1 of 0.729. According to the SHAP analysis, the top five important features were alanine aminotransferase, body mass index, waist circumference, high-density lipoprotein cholesterol, and total cholesterol. Further analysis of the feature selection in the RF model revealed that incorporating all features leads to optimal model performance. Conclusions ML algorithms, especially RF algorithm, improve the accuracy of MASLD identification, and the global and local interpretation of the RF model results enables us to intuitively understand how various features affect the chances of MASLD in patients with hypertension and pre-hypertension.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3