Public patient views of artificial intelligence in healthcare: A nominal group technique study

Author:

Musbahi Omar1,Syed Labib1ORCID,Le Feuvre Peter1,Cobb Justin1,Jones Gareth1

Affiliation:

1. MSK Lab, Imperial College London, Charing Cross Campus, Hammersmith, London, UK

Abstract

Objectives The beliefs of laypeople and medical professionals often diverge with regards to disease, and technology has had a positive impact on how research is conducted. Surprisingly, given the expanding worldwide funding and research into Artificial Intelligence (AI) applications in healthcare, there is a paucity of research exploring the public patient perspective on this technology. Our study sets out to address this knowledge gap, by applying the Nominal Group Technique (NGT) to explore patient public views on AI. Methods A Nominal Group Technique (NGT) was used involving four study groups with seven participants in each group. This started with a silent generation of ideas regarding the benefits and concerns of AI in Healthcare. Then a group discussion and round-robin process were conducted until no new ideas were generated. Participants ranked their top five benefits and top five concerns regarding the use of AI in healthcare. A final group consensus was reached. Results Twenty-Eight participants were recruited with the mean age of 47 years. The top five benefits were: Faster health services, Greater accuracy in management, AI systems available 24/7, reducing workforce burden, and equality in healthcare decision making. The top five concerns were: Data cybersecurity, bias and quality of AI data, less human interaction, algorithm errors and responsibility, and limitation in technology. Conclusion This is the first formal qualitative study exploring patient public views on the use of AI in healthcare, and highlights that there is a clear understanding of the potential benefits delivered by this technology. Greater patient public group involvement, and a strong regulatory framework is recommended.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3