Detection of the most influential variables for preventing postpartum urinary incontinence using machine learning techniques

Author:

Benítez-Andrades José Alberto1ORCID,García-Ordás María Teresa2ORCID,Álvarez-González María3,Leirós-Rodríguez Raquel4,López Rodríguez Ana F3

Affiliation:

1. SALBIS Research Group, Department of Electric, Systems and Automatics Engineering, Universidad de León, León, Spain

2. SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de León, León, Spain

3. Faculty of Health Sciences, Universidad de León, Ponferrada, Spain

4. SALBIS Research Group, Nursing and Physical Therapy Department, Universidad de León, Ponferrada, Spain

Abstract

Background Postpartum urinary incontinence is a fairly widespread health problem in today’s society among women who have given birth. Recent studies analysing the different variables that may be related to Postpartum urinary incontinence have brought to light some variables that may be related to Postpartum urinary incontinence in order to try to prevent it. However, no studies have been found that analyse some of the intrinsic and extrinsic variables of patients during pregnancy that could give rise to this pathology. Objective The objective of this study is to assess the most influential variables in Postpartum urinary incontinence by means of machine learning techniques, starting from a group of intrinsic variables, another group of extrinsic variables and a mixed group that combines both types. Methods Information was collected on 93 patients, pregnant women who gave birth. Experiments were conducted using different machine learning classification techniques combined with oversampling techniques to predict four variables: urinary incontinence, urinary incontinence frequency, urinary incontinence intensity and stress urinary incontinence. Results The results showed that the most accurate predictive models were those trained with extrinsic variables, obtaining accuracy values of 70% for urinary incontinence, 77% for urinary incontinence frequency, 71% for urinary incontinence intensity and 93% for stress urinary incontinence. Conclusions This research has shown that extrinsic variables are more important than intrinsic variables in predicting problems related to postpartum urinary incontinence. Therefore, although not conclusive, it opens a line of research that could confirm that the prevention of Postpartum urinary incontinence could be achieved by following healthy habits in pregnant women.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3