Enhancing diabetic retinopathy classification using deep learning

Author:

Alwakid Ghadah1,Gouda Walaa2,Humayun Mamoona3ORCID,Jhanjhi NZ4ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah, Al Jouf, Saudi Arabia

2. Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo, Egypt

3. Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakakah, Al Jouf, Saudi Arabia

4. School of Computer Science and Engineering (SCE), Taylor's University, Subang Jaya, Malaysia

Abstract

Prolonged hyperglycemia can cause diabetic retinopathy (DR), which is a major contributor to blindness. Numerous incidences of DR may be avoided if it were identified and addressed promptly. Throughout recent years, many deep learning (DL)-based algorithms have been proposed to facilitate psychometric testing. Utilizing DL model that encompassed four scenarios, DR and its stages were identified in this study using retinal scans from the “Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 Blindness Detection” dataset. Adopting a DL model then led to the use of augmentation strategies that produced a comprehensive dataset with consistent hyper parameters across all test cases. As a further step in the classification process, we used a Convolutional Neural Network model. Different enhancement methods have been used to raise visual quality. The proposed approach detected the DR with a highest experimental result of 97.83%, a top-2 accuracy of 99.31%, and a top-3 accuracy of 99.88% across all the 5 severity stages of the APTOS 2019 evaluation employing CLAHE and ESRGAN techniques for image enhancement. In addition, we employed APTOS 2019 to develop a set of evaluation metrics (precision, recall, and F1-score) to use in analyzing the efficacy of the suggested model. The proposed approach was also proven to be more efficient at DR location than both state-of-the-art technology and conventional DL.

Funder

Ministry of Education in Saudi Arabia

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3