A new machine learning algorithm with high interpretability for improving the safety and efficiency of thrombolysis for stroke patients: A hospital-based pilot study

Author:

Shao Huiling1ORCID,Chan Wing Chi Lawrence1,Du Heng1,Chen Xiangyan Fiona1,Ma Qilin2,Shao Zhiyu2

Affiliation:

1. Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

2. Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China

Abstract

Background Thrombolysis is the first-line treatment for patients with acute ischemic stroke. Previous studies leveraged machine learning to assist neurologists in selecting patients who could benefit the most from thrombolysis. However, when designing the algorithm, most of the previous algorithms traded interpretability for predictive power, making the algorithms hard to be trusted by neurologists and be used in real clinical practice. Methods Our proposed algorithm is an advanced version of classical k-nearest neighbors classification algorithm (KNN). We achieved high interpretability by changing the isotropy in feature space of classical KNN. We leveraged a cohort of [Formula: see text] patients to prove that our algorithm maintains the interpretability of previous models while in the meantime improving the predictive power when compared with the existing algorithms. The predictive powers of models were assessed by area under the receiver operating characteristic curve (AUC). Results In terms of interpretability, only onset time, diabetes, and baseline National Institutes of Health Stroke Scale (NIHSS) were statistically significant and their contributions to the final prediction were forced to be proportional to their feature importance values by the rescaling formula we defined. In terms of predictive power, our advanced KNN (AUC 0.88) outperformed the classical KNN (AUC 0.75, [Formula: see text]). Conclusions Our preliminary results show that the advanced KNN achieved high AUC and identified consistent significant clinical features as previous clinical trials/observational studies did. This model shows the potential to assist in thrombolysis patient selection for improving the successful rate of thrombolysis.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3