The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update

Author:

Lai Raymond1,Ingham Robert J.2

Affiliation:

1. Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, Rm 2338, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2

2. Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada

Abstract

Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field. In this review, we provide readers with a brief update on specific areas of NPM-ALK pathobiology. In the first part, the NPM-ALK/signal transducer and activator of transcription 3 (STAT3) signaling axis is discussed, with an emphasis on the existence of multiple biochemical defects that have been shown to amplify the oncogenic effects of this signaling axis. Specifically, findings regarding JAK3, SHP1 and the stimulatory effects of several cytokines including interleukin (IL)-9, IL-21 and IL-22 are summarized. New concepts stemming from recent observations regarding the functional interactions among the NPM-ALK/STAT3 axis, β catenin and glycogen synthase kinase 3β will be postulated. Lastly, new mechanisms by which the NPM-ALK/STAT3 axis promotes tumorigenesis, such as its modulations of Twist1, hypoxia-induced factor 1α, CD274, will be described. In the second part, we summarize recent data generated by mass spectrometry studies of NPM-ALK, and use MSH2 and heat shock proteins as examples to illustrate the use of mass spectrometry data in stimulating new research in this field. In the third part, the evolving field of microRNA in the context of NPM-ALK biology is discussed.

Publisher

SAGE Publications

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3