Affiliation:
1. Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, USA
2. Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, USA,
Abstract
The capacity to make secondary structures significantly affects the ability of Toll-like receptor 9 (TLR9) agonists and antagonists to either induce or block TLR9-dependent activation in B cells. However, it has a minor impact on TLR9-induced activation in interferon alpha (IFNα)-producing dendritic cells. Based on the ability of inhibitory oligodeoxynucleotides to form predictable secondary structures, we have classified TLR9-antagonists into Class R (‘restricted’, palindromic) and Class B (‘broadly reactive’, linear) oligodeoxynucleotides. In non-autoreactive B cells, Class R oligodeoxynucleotides are at least 10-fold less potent TLR9-inhibitors. We wanted to determine whether engagement of the B-cell receptor for antigen could overcome this restriction. Here we show that in non-autoreactive mouse B cells, B-cell receptor for antigen engagement increased the potency of Class R oligodeoxynucleotides for TLR9 activation at least 10-fold, making it equal in potency to linear oligodeoxynucleotides. However, this enhanced potency was selective for TLR9-induced B-cell cycling and apoptosis protection while TLR9-induced IL-6, an event that strongly depends on signaling via late endosomes, still required 10 times more Class R oligodeoxynucleotides. Thus, pathway-specific effects of Class R oligodeoxynucleotides for TLR9/B-cell receptor for antigen co-stimulated B cells may have therapeutic advantages over non-selective targeting of B cells, a strategy that may be seen as a potential therapy for human systemic lupus erythematosus. Lupus (2010) 19, 1290—1301.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献